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Abstract

This paper presents a statistical method to calculate local interfacial variables in two-phase gas±liquid
bubbly ¯ows from data taken with double-sensor intrusive probes. Firstly, one derives the geometrical
relationship existing between the apparent and actual bubble velocity for a single spherical bubble
¯owing in a multidimensional ¯ow ®eld. The apparent variables are obtained from the experimental
data when one assumes that the bubble trajectory is aligned with the probe axis. A similar relationship
exists for the intersected chord length and bubble diameter. Then, the analysis is extended to a swarm of
bubbles. The ratio between the apparent to the actual bubble velocity and the intersected chord length
to the bubble diameter appear now as probability density functions. The experimental data were taken
for air±water bubbly ¯ow regime in a vertical round pipe with a double tip electrical probe. Processing
the phase density function generated by the bubble events, one determines distribution function of the
bubble velocity and intersected chord length, termed the apparent distributions. The variables of
interest, actual bubble velocity and diameter, come out of the solution of a linear system of equations
relating the probability function of the measured and estimated bubble velocity and bubble size ratio.
The probability density function of the actual bubble velocity and bubble diameter, plus the bubble
frequency, add up to various interfacial properties calculated with this technique: the void fraction, the
bubble velocity, the bubble size, the interfacial area density and the interface velocity ¯uctuation
intensity. To validate the method, the paper compares local and area averaged quantities with previously
published results, volumetric measurements and extensively used correlation. 7 2000 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

Intrusive crossing probes were the ®rst and, in many instances, the only experimental
technique used to study the detailed spatial distribution of local variables in two-phase ¯ows.
Speci®cally in bubbly ¯ow, electrical and optical probes and hot wire anemometer were widely
used to measure the local void fraction, bubble size and frequency, interfacial velocity, area
density and their spatial distribution (Serizawa et al., 1975a, 1975b; Lopez de Bertodano, 1992;
Delhaye and Galaup, 1974).
When measuring variables in a vertical bubbly ¯ow, with local void fractions attaining

values as high as 20%, as one does in this work, it is inevitable that an intrusive probe method
must be used. The intrusive probe, when inserted in the ¯ow, pierces the dispersed gas bubbles
and senses the phase change around its tip using di�erent physical processes. They are (1) the
variation of the electrical properties; (2) the variation of the refraction index, and (3) the
change on the heat transfer coe�cient, respectively, if one considers the electrical and optical
probes or the hot wire anemometer. However, intrusive probes disturb the ¯ow. Alternatives
are the non-intrusive techniques, like the ultrasonic Doppler (Hilgert and Ho�mann, 1986), the
state of the art Laser Doppler Velocimetry (LDV), or the Particle Image Velocimetry (PIV),
and related photographic methods (Bachalo, 1994), which have been increasingly used. These
non-intrusive techniques, despite being expensive, lack applications when the void fraction
increases and the sound or the light beam has to cross a vast number of interfaces to reach the
measurement volume.
Direct measurement of the time period for which the tip of the probe stays inside the gas

bubble and that of the time interval the gas±liquid interface takes to travel between the two
tips of a double-sensor probe, lead to the measurement of void fraction, bubble size and
frequency, interface (bubble) velocity and interfacial area density. Following this line, Herringe
and Davis (1976) developed an analysis relating the statistical distribution of a spherical bubble
size to its measured chord length. The translation of the statistical parameters depended upon
the bubble velocity, as measured by the probe. Recently, Liu and Clark (1995) presented an
approach linking the statistical distribution of the bubble size to the chord length of the less
restrictive ellipsoidal and ellipsoidal±truncated bubbles. In both papers the method is limited in
a sense that the authors assume one-directional bubble trajectory, which is, ultimately, aligned
with the probe axis. In a multidimensional bubbly ¯ow, several forces and bubble-¯uid
interaction impose a spatial bubble trajectory. The bubble trajectory is not necessarily aligned
with the axis of the probe. This misalignment is represented by an entrance angle, giving rise to
an apparent bubble velocity. The apparent velocity, as measured by the probe, may be di�erent
from the actual bubble velocity. The ®rst attempt to account for the entrance angle e�ect was
proposed by Kataoka et al. (1986) when measuring the interfacial area density in dispersed
¯ows.
In this paper a statistical analysis that generalizes the calculation of local interfacial variables

in bubbly ¯ows from data taken with a double-sensor intrusive probe is presented. The
approach used herein relies on a statistical post-processing algorithm relating the probability
distribution functions of the apparent (as measured by the probe) bubble velocity and chord
length to the distribution of the actual variables. To develop this analysis, one followed a
number of assumptions describing the multidimensional nature of the bubble displacement. It
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has a general nature in the sense that the in¯uence of the entrance angle on the bubble
trajectory is accounted for. It is based on the pioneering works of Herringe and Davis (1976)
and Kataoka et al. (1986), who ®rst estimated the bubble size from intersected chords, and
who ®rst considered multidimensional e�ects in bubbly ¯ows, respectively.
The main objective is to determine two fundamental statistical functions of actual quantities.

Namely, the probability density function (PDF) of the actual (1) interfacial (or bubble) velocity
and (2) bubble size. Coupled with the direct measurement of the void fraction and bubble
frequency, some other local interfacial properties stem from these fundamental functions:
interfacial area density, interface velocity ¯uctuation intensity and super®cial gas velocities.
The paper is organized into four sections. The ®rst section is the introduction. In Section 2

one deduces the relationships existing between the apparent and actual quantities, bubble
(interface) velocity and bubble size, for both the isolated bubble and the swarm of bubbles.
Section 2 ends describing the numerical algorithm that evaluates the distribution of actual
variables from the analytical relationships and measured values. Section 3 presents the
experimental apparatus, the probe, the threshold criteria to obtain the phase indicator function
and the data acquisition system. In Section 4 the results are presented and compared with
published data. Finally, the conclusions are drawn in Section 5.

2. Analysis

The relationship that exists between the apparent and actual interfacial variables of an
isolated bubble that ¯ows immersed in a liquid is the ®rst subject of this analysis. These
variables are the interface (or bubble) velocity and the bubble size. The apparent velocity,
which is measured by the probe, does not necessarily equal the actual velocity. As a result, the
chord length that is intersect by the probe does not necessarily match the actual one. The
above mentioned relationships depend on the probe and bubble geometry and on the bubble
trajectory regarding the probe axis. To calculate them one assumes that (1) the ¯ow is
stationary; (2) the bubbles are spherical; (3) the probe is aligned with the main ¯ow direction
and does not disturb the liquid phase; and (4) the intrusion of the probe neither alters the
bubble trajectory nor distorts the gas±liquid interface.
In a further step, the analysis is extended from the single bubble to a swarm of gas bubbles

dispersed in a liquid ¯ow, characterizing a bubbly ¯ow. The variables are now expressed as
probability distribution functions. The actual and apparent probability functions may di�er for
several reasons: the ¯ow is multidimensional and the bubble displaces along a spatial
trajectory; the velocity ¯uctuation due to turbulence and/or the bubble±¯uid interaction may
cause, on the bubble trajectory, a misalignment angle Ð the so called entrance angle Ð
regarding the probe axis (Kataoka et al., 1986). Coupled with this, one must consider the fact
that the probe does not always intersect a bubble at its center. The statistical analysis presented
herein, taking into account the reasoning above, establishes a procedure to estimate the actual
probability functions of the bubble velocity and the intersected chord from the measured, or
apparent, ones.
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2.1. The single bubble: actual and apparent bubble velocity and size

Fig. 1 shows a sketch of the jth spherical bubble of diameter Dj touching the probe with an
actual velocity Vbj : The double-sensor probe is depicted as two dots, representing the front
sensor, F (coincident with dot labeled A on the bubble surface, Fig. 1), and the rear sensor, R.
They are separated from each other, and aligned along the zz ' axis, which is coincident with
the mean ¯ow direction. The angle between the velocity Vbj and the zz ' axis is named the
entrance angle, g: The points where the sensors touch the bubble surface are represented by A
and A ' and refer, respectively, to the front and rear sensors. Two auxiliary variables, the polar,
x, and conical, f, angles, de®ning a spherical coordinate system, will be used. The angle f is
formed by Vbj and nj, the unit normal vector at A; x is the polar angle measured on a plane
normal to Vbj : The lines de®ned by the segments AR and A 'R are parallels with zz ' and Vbj

having length ` and sj, respectively.
De®ning Dtj as the time lapse the jth interface spends to travel between the sensors, the

bubble actual velocity is expressed as follows:

Vbj �
sj
Dtj

�1�

The apparent velocity, Vsj , as measured by the probe, is

Vsj �
`

Dtj
, �2�

Fig. 1. Geometrical variables.
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and depends strongly on the contact point A, as pointed out by Kataoka et al. (1986). Finally,
the ratio between the apparent and the actual velocity is:

Vsj

Vbj

� `

sj
�3�

The dependence of the velocity ratio (3) on the contact point A is justi®ed by geometrical
arguments. The spherical bubble can be divided into two hemispheres by a plane whose normal
is parallel with the bubble velocity, Vbj : The upper hemisphere, shown in Fig. 1, can be divided
again into four zones. Within each zone these variables behave as described below:

1. Zone I: If the contact point A is within this region, the front sensor touches the bubble, but
not the rear sensor. Therefore, there is no apparent velocity;

2. Zone II: Due to the bubble radius on the locus of the contact point A, the distance ` is
always shorter than sj within this zone. Therefore, the actual velocity is greater than the
apparent one;

3. Zone III: In this zone the distance ` is always greater than sj, i.e., the opposite of zone II.
Thus, the actual velocity is smaller than the apparent one;

4. Zone IV: The front sensor touches the bubble after the rear sensor. Hence, within this zone
negative apparent velocities occur.

Referring again to Fig. 1, the front sensor pierces the bubble at point A, and leaves it at B.
The segment AB de®nes the intercepted chord. De®ning tFj

as the residence time the jth bubble
is in contact with the front sensor, the apparent and actual chord length, Xsj and Xsj , are:

Xsj � tFj
� Vsj , �4�

Xbj � tFj
� Vbj : �5�

Noticing that the actual chord length, Xbj , is

Xbj � Dj cos
ÿ
fj

�
, �6�

the ratio between the apparent chord length and the bubble diameter:

Xsj

Dj
�
�
`

sj

�
cos
ÿ
fj

�
: �7�

The velocity and the chord ratios, de®ned by Eqs. (3) and (7), are given in terms of ` and sj,
which are distances pertaining to the probe and bubble geometry. If the bubble trajectory and
the axis of the probe are parallel, one gets g � 0 and �`=sj � � 1: In the more general case of
multidimensional ¯ows with g 6�0, the velocity and chord ratio can be greater or less than unity,
depending on the values that ` and sj assume. In fact, �`=sj� depends on the value the angles f,
x, g may take for the jth bubble:
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�
`

s

�
j

�

24Dj

`

cos
ÿ
fj

�
2
� cos�gj� ÿ

(�
Dj

`

cos
ÿ
fj

�
2

�2

ÿDj

`
sin�gj� cos

ÿ
xj
�

sin
ÿ
fj

�ÿ sin2�gj�

)1=2
35ÿ1

:

�8�
If the bubble diameter is much larger than the lengthwise distance between sensors, D� ` the
e�ect of the bubble surface curvature on the ratio �`=sj� is then negligible, and the contact
surface can be approximated by a tangent plane on A. Therefore, for �D=`� � 1 the
dependence of �`=sj� on Dj vanishes, and Eq. (8) simpli®es to:�

`

sj

�
�
h
cos�gj� � sin�gj� cos

ÿ
xj
�

tan
ÿ
fj

�iÿ1
: �9�

The ratio �`=sj), given exactly by Eq. (8), or in an approximate form by Eq. (9), is a
fundamental geometrical quantity. The velocity and chord length ratios stem directly from
�`=sj� and can be speci®ed in terms of the angles f, x, g, substituting Eq. (8) in Eq. (3) and Eq.
(8) in Eq. (7), or Eq. (9) in Eq. (3) and Eq. (9) in Eq. (7) if �D=`� � 1 applies.

2.2. The statistical analysis for a bubbly ¯ow

If one considers a swarm of bubbles, the probability of �`=s� within d�`=s� is:

p

�
`

s

�
d

�
`

s

�
�
�
f, x, g, D

p�D, f, x, g� d�D� d�x� d�g�: �10�

where D, f, x and g de®ne a multidimensional region where �`=s� occurs and p�`=s� is the
probability density function of �`=s).
In Eq. (10), the geometrical variables D, f, x, g and s, no longer refer to the jth bubble, but

are random variables. Furthermore, considering that the probe touches the bubble at points
randomly distributed over its surface, and assuming that the events of D, f,x,g are statistically
independent, Eq. (10) can be re-written as:

p

�
`

s

�
d

�
`

s

�
�
�
f, x, g, D

p�D�p�f�p�x�p�g� d�D� d�f� d�x� d�g�: �11�

If one now extends the geometrical relationships that apply for a single bubble, Eqs. (3) and
(7), to the swarm of bubbles that characterizes a bubbly ¯ow, the PDFs p�Vs=Vb� and p�Xs=D�
are:

p

�
Vs

Vb

�
� p

�
`

s

�
, �12�

p

�
Xs

D

�
� p

�
` cos f

s

�
: �13�
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2.3. Analytical expressions for the velocity and chord ratio distributions

The probability density function p�`=s� becomes fully established when one constitutes the
PDFs p(D ), p�f�, p�x� and p�g�: These statistical functions derive from the bubble and probe
geometry and from assumptions concerning the characteristics of the ¯ow ®eld as follows:

. The PDF p(D ) may depend on several factors: gas and liquid ¯ow rates, ¯uid properties,
pipe diameter and characteristics of the gas±liquid mixer. Unfortunately, no assumption
related to this function can be made in advance. Even though one stresses that this
dependence shall vanish if the bubble diameter is much greater than the lengthwise sensor
spacing, �D=`� � 1, the approximation of Eq. (9) holds. In view of these di�culties, no
contribution of p(D ) is considered beforehand when p�`=s�, Eq. (11), is evaluated. Actually,
the method itself is a proposition to evaluate it. The implications of this bold assumption are
veri®ed when the ®nal results are obtained and checked.

. For a spherical bubble, the probability density function p�f� is given by Herringe and Davis
(1976):

p�f� � sin�2f�, 0RfRp
2
: �14�

. The polar angle x may take any value between 0 and 2p with equal probability. Therefore,

p�x� � 1

2p
, 0RxR2p: �15�

. To constitute the PDF p�g�, one postulates that the entrance angle g is settled by some ¯ow
characteristics: the void fraction, the bubble shape, the velocity ®eld and the ¯ow pattern.
When the ¯ow pattern is either the ``laminar bubbly ¯ow'', typical of low void fraction,
small and spherical bubbles, or the ``churn-turbulent bubbly ¯ow'', appearing at higher void
fractions (Ishii, 1975), one expects a uniform distribution of the entrance angle. Under these
circumstances, assuming that g is uniformly distributed within a solid angle g0, its PDF
yields:

p�g� � sin g
1ÿ cos g0

, 0RgRg0: �16�

Following Kataoka et al. (1986), and assuming that the bubble velocity ¯uctuation is isotropic,
one can relate the limiting angle g0 to the axial component of the bubble velocity, Vbz, by
means of its variance and mean value,

g0 �
�����������������������������������
4
ÿ
sVbz

= �Vbz

�2
1� 3

ÿ
sVbz

= �Vbz

�2
vuut , �17�

Knowing that Vbz � Vb cos g, the ratio �sVbz
= �Vbz�2 can be expressed as:"�sVbz

�Vbz

�2

�1
#
�
"�sVb

�Vb

�2

�1
#

cos2 g

�cos g�2 : �18�
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Substituting Eqs. (14)±(16) in Eq. (11), the probability function for �`=s� is found as:

p

�
`

s

�
d

�
`

s

�
�
�

sin 2f sin g
2p
ÿ
1ÿ cos g0

� d�f� d�x� d�g�, �19�

When the bubbles grow above a certain critical size, the ¯ow pattern is called the ``distorted
bubble regime'' (Ishii, 1977). In this case, a constant entrance angle is likely to occur: the
bubbles displace along a helical path, usually referred to as a ``zigzag path of distorted
bubbles,'' as viewed on a plane (Sa�man, 1956). Considering the occurrence of a constant
entrance angle, Eq. (19) is further simpli®ed to:

p

�
`

s

�
d

�
`

s

�
�
�

sin 2f
2p

d�f� d�x�: �20�

An explicit expression for p�`=s� could be cast if the variables f, x, g, appearing in Eq. (8) or
Eq. (9), could be expressed in terms of the ratio �`=s). The same applies to p�Vs=Vb� and
p�Xs=D� as seen in Eqs. (12) and (13). Since such transformation was not possible to achieve,
the PDFs p�`=s�, p�Vs=Vb� and p�Xs=D� were numerically evaluated. The results are shown in
succession.
Fig. 2 depicts the velocity ratio PDF, p�Vs=Vb�, for g uniformly distributed within a solid

angle g0, and �D=`� � 1:5: The three curves in the plot refer to di�erent values of g0, 108, 208
and 308. One observes in Fig. 2 that as g0 increases from 108 to 308, the expected average value
and the standard deviation shift, respectively, from 1.019 to 1.130, and from 0.1139 to 0.3193.
As the limiting angle g0 reduces, p�Vs=Vb� becomes sharper, increasing the probability of
measuring velocities closer to the actual bubble velocity.
The curves in Fig. 3 are the PDFs of the chord ratio, p�Xs=D�: Again, the three curves refer

to g0 � 108, 208 and 308 and �D=`� � 1:5: Notice that, if the entrance angle is ®nite, the probe

Fig. 2. PDF of the velocity ratio, p�Vs=Vb�, for �D=`� � 1:5 and g uniformly distributed within a solid angle of 108,
208 and 308.
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may measure apparent chord lengths even larger than the bubble diameter. The larger the

limiting angle g0 is, the higher is the chance of measuring apparent chords larger than D. The

increase from 108 to 308 does not translate into major changes in the p�Xs=D�: In fact, the

averaged value of the chord length ratio, shifts only from 0.71 to 0.78 when g0 increases from

108 to 308.
Figs. 4 and 5 show the in¯uence of the lengthwise distance between sensors upon p�Vs=Vb�

and p�Xs=D�, yet for a uniform distribution of g, with g0 � 208 The open circle symbol refers to

the approximation of Eq. (9): �D=`� � 1 and p�`=s� has no dependence on the bubble diameter

probability function. The solid circle symbol refers to �D=`� � 0:8, a typical value, for example,

in Serizawa et al. (1975a); the cross symbol applies for �D=`� � 1:5: Most of the works

reporting measurement of bubble velocity and diameter do not consider the bubble surface

curvature e�ect, in other words, they assume �D=`� � 1: As the ratio �D=`� increases from 0.8

to in®nity, for example, there is only a minimum change in the mean velocity ratio, �Vs=Vb),

from 1.048 to 1.061. However, the standard deviation of the velocity ratio increases from

0.1139 to 0.3193. The analysis is quite similar for mean chord ratio, �Xs=D); its mean value

varies from 0.7349 to 0.7289, and the standard deviation, from 0.1968 to 0.3298.

The probability functions p�Vs=Vb� and p�Xs=D� for a constant entrance angle are shown in

Figs. 6 and 7. The three curves correspond to g � 108, 208 and 308, and apply to �D=`� � 1:5:

As one would expect, the probability of measuring velocities that fall away from the actual

bubble velocity increases if the results are compared with the cases for g uniformly distributed.

The PDF p�Xs=D� spreads out even more in Fig. 6 compared with Fig. 3, which applies for a

uniform distribution of g � 208: For g � 208 and g � 308, the curves have a signi®cant number

of apparent chord lengths that are larger than the bubble diameter.

The in¯uence of the characteristics of the entrance angle and the magnitude of �D=`� on the

PDFs p�Vs=Vb� and p�Xs=D� are fully explored in Dias (1998).

Fig. 3. PDF of the chord ratio, p�Xs=D�, for �D=`� � 1:5 and g uniformly distributed within a solid angle of 108, 208
and 308.
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2.4. Calculating the distribution of the actual velocity and chord length

Consider now an idealized bubbly ¯ow: the mixture has bubbles of uniform diameter
displacing at constant velocity along the one-directional trajectory parallel to the probe axis.
The apparent velocity, as measured by the probe, would show up as a constant value. The
chord length, however, would spread around an average value, as a result of the randomness
of the position where the sensor touches the bubble, which is related to the angle f: This
simple case illustrates that the non-deterministic nature of the measuring method is due not
only to the ¯ow ¯uctuations or the multidimensional bubble trajectories, but also to the
randomness of the contact point.
In a less restrictive ¯ow, the approach requires the disclosure of the actual variables Ð

Fig. 4. PDF of the velocity ratio, p�Vs=Vb�, for g uniformly distributed within a solid angle of 208 and �D=`� � 0:8,
1.5 and 1:

Fig. 5. PDF of the chord ratio, p�Xs=D�, for g uniformly distributed within a solid angle of 208 and �D=`� � 0:8, 1.5
and 1:
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bubble velocity and chord length distribution Ð from the apparent ones. The PDFs p�Vs=Vb�
and p�Xs=D� arise from geometrical relationships concerning the bubble shape and the probe
dimension and, moreover, upon the entrance angle. Then, one postulates they become
independent or, at least, have a weak dependence on p�Vb� and p�Xb�: Hence, the probability,
p�Vs�d�Vs�, can be written as the joint distribution of the velocity ratio and the actual velocity:

p�Vs�d�Vs� �
��1
ÿ1

p�Vs=Vb�d�Vs=Vb�p�Vb�d�Vb� �21�

Similarly for the chord length,

p�Xs�d�Xs� �
��1
ÿ1

p�Xs=D�d�Xs=D�p�D�d�D�: �22�

Fig. 6. PDF of the velocity ratio, p�Vs=Vb�, for �D=`� � 1:5 and a constant entrance angle, g, of 108, 208 and 308.

Fig. 7. PDF of the chord ratio, p�Xs=D�, for �D=`� � 1:5 and a constant entrance angle, g, of 108, 208 and 308.
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The generality of these two equations derives from the fact that p�Vs� and p�Xs� are not de®ned
a priori.
De®ning the ®rst and the second statistical moments of a random variable Y as:

�Y �
�
Y

p�Y� � Y dY, Y 2 �
�
Y

p�Y� � Y 2 dY, �23�

one can establish, from Eqs. (21) and (22), the relationship between the ®rst and second
statistical moments of the velocities and of the intersected chord length as:

Vs �
�
Vs

Vb

�
Vb, V 2

s �
�
Vs

Vb

�2

V 2
b , �24�

�Xs �
�

�Xs

D

�
�D, �X

2

s �
�

�Xs

D

�2

D2: �25�

Eqs. (24) and (25) express the local mean velocity and the chord length in terms of their
respective distributions. Similar to Eqs. (21) and (22), the di�erence between the actual bubble
mean velocity, �Vb, and the apparent one, �Vs, depends on the mean value of the p�Vs=Vb�; the
same reasoning applies to the actual mean bubble diameter �D and the measured mean chord
length, �Xs: Looking at the di�erence between apparent and actual mean values, Figs. 2 and 5
show that the mean value of p�Vs=Vb� may attain values up to 1.27. Conversely, the mean
value of p�Xs=D� is invariably less than one, as shown in Figs. 3, 4 and 6, and can be as low as
0.70. The variances of the actual bubble velocity and diameter are de®ned as:

s2
Vb
� ÿV 2

b

�ÿ ÿ �Vb

�2
and s2

D � �D2� ÿ � �D�2: �26�

Using Eqs. (24) and (25), the mean and the variance of the actual distributions are determined.
On the other hand, to know the whole frequency spectrum of each variable, it is necessary to
determine the PDFs from Eqs. (21) and (22). The analytical functions p�`=s� and p�` cos f=s�
and their measured counterparts, p�Vs� and p�Xs�, will form a system of equations whose
solutions are the actual bubble velocity and size distribution, p�Vb�, and p(D ). The integral
equations, Eqs. (21) and (22), are solved numerically, approximating them by a summation of
discrete terms, as indicated by Eqs. (27) and (28):

p
ÿ
Vsi

�
D
ÿ
Vsi

� �XM
k�1

p
ÿ
Vsi=Vbk

�
D
ÿ
Vsi=Vbk

�
p
ÿ
Vbk

�
, i � 1, . . . ,N �27�

p
ÿ
Xsi

�
D
ÿ
Xsi

� �XM
k�1

p
ÿ
Xsi=Dk

�
D
ÿ
Xsi=Dk

�
p�Dk�D�Dk�, i � 1, . . . ,N �28�

where N and M are the number of classes of Vs and Vb in Eq. (27), or the number of classes of
Xs and D in Eq. (28), respectively. D�Vsi�, D�Vbk� and D�Vsi=Vbk� represent the class intervals of
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p�Vs�, p�Vb� and p�Vs=Vb� in Eq. (27). Similarly, D�Xsi�, D�Dk� and D�Xsi=Dk� represent the class
intervals of p�Xs�, p(D ) and p�Xs=D� in Eq. (28).
The experimental values of Vs or Xs de®ne intervals, which bound the expected values of Vb

and D, respectively. Without loss of generality, one can specify the actual variables, Vb and D,
to vary within the same range as the apparent variables, Vs and Xs: Furthermore, to simplify
the evaluation, one can assume that the number of classes is equal, i.e., N �M: These
assumptions lead to:

Vs�minRVbRVs�max, Xs�minRDRXs�max, D
ÿ
Vsi

� � D
ÿ
Vbk

�
and D

ÿ
Xsi

� � D�Dk�:

Eqs. (27) and (28) are generically written in a matrix form as:266664
C1, 1 C1, 2 � � � C1, N

C2, 1 C2, 2 � � � C2, N

..

. ..
. ..

. ..
.

CN, 1 CN, 2 � � � CN, N

377775 �
266664
I1
I2

..

.

IN

377775 �
266664
O1

O2

..

.

ON

377775: �29�

The coe�cient Ci, k is the product of p�Vs=Vb�, or p�Xs=D�, by its respective class interval; Ii is
the actual probability, p�Vb�d�Vb� or p�D�d�D�, and Oi is the apparent probability, p�Vs�d�Vs�
or p�Xs�d�Xs�, measured by the probe. For convenience, Table 1 exhibits the forms that Ci, k, Ik
and Oi may take when used to represent Eq. (27) or Eq. (28).
Rather than getting the unknowns directly from Eq. (29), the linear system is solved as an

optimization problem, requiring a minimum value for the residual R,

R �

������������������������������������������������XN
i�1

 
Oi ÿ

XN
i�1

Ci, kIk

!2

N

vuuuut
, �30�

subjected to the following constraints:

Ikr0 and
XN
i�1

Ik � 1: �31�

The optimization was an e�ective tool to estimate p�Vb� and p(D ). In some cases, a direct
solution of Eq. (25) gave inconsistent results, as a negative value for p�Vbj�D�Vbj�: One imputes

Table 1
Coe�cients in Eq. (29)

For use in Ci, k Ik Oi

Eq. (23) p�Vsi=Vbk �D�Vsi=Vbk � �Vbk �D�Vbk � p�Vsi �D�Vsi �
Eq. (24) p�Xsi=Dk�D�Xsi=Dk� p�Dk�D�Dk� p�Xsi �D�Xbi �
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this direct solution de®ciency to the fact that the apparent distribution, as measured by the
probe, is only a sub-set of all possible values that the variables may take.
The numerical routine was implemented as a FORTRAN language. It runs in a PC-AT

driven by a Pentium 100 MHz processor in 30 s, when the number of classes is N = 60, and
the residual is less than 0.001.

3. Experimental technique

3.1. Experimental apparatus

To verify the method an experimental apparatus has been set up, Fig. 8. The test section
consists of a 52 mm ID, clear, vertical, Plexiglas straight pipe, 50 diameters long. Its verticality
was carefully veri®ed. Ordinary tap water and air were the working ¯uids. The water was fed
by a stainless steel centrifugal pump. The air was supplied by a large tank, 1.5 m3, maintained
at 8 bar. Two ori®ce plates, both with an accuracy within 2%, were used to measure the air
and water ¯ow rate, respectively. The air ori®ce plate was calibrated against a laminar element,
while the liquid ori®ce su�ered a primary calibration. The liquid and gas super®cial velocities
applied during the tests were up to 100 and 15 cm/s, respectively.
The air±water mixing chamber locates at the lower end of the vertical pipe. The mixing

process develops through an adjustable annular space formed by the chamber wall and a
cylindrical porous media. A fairly uniform mixing and quick development of an upward
bubbly ¯ow is achieved injecting the air through the porous media while the water is ¯owing
through the annular space. The measuring section is 40 diameters upstream the air±liquid

Fig. 8. Schematics of the experimental apparatus.
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mixer. To allow photographic records, this section is surrounded by a Plexiglas square box.
The box, ®lled with water, compensates for optical distortions introduced by the pipe
curvature. The probe enters the test section through a side hole 2 mm in diameter. A radial
displacing mechanism, driven by a micrometer, supports it. Downstream the test section, the
mixture discharges into a separation tank. The water ¯ows back to the reservoir by gravity,
while the air is discharged into the atmosphere.
The double-sensor probe detects the change in the electrical resistance, in the medium

surrounding the electrodes Ð the tip of the probe and its body. An electrical probe was chosen
due to the relatively simple and inexpensive electronic signal conditioning circuit required to
drive it and also, on the positive results for conducting liquids presented in the literature. The
material of the probe and its geometrical dimensions are sketched in Fig. 9. The twin sensors
are made of exposed tips, 120 mm in diameter, of an otherwise electrically insulated copper
wire. The wires go through a stainless steel hypodermic needle of 700 mm OD. The needle gives
structural support for the wires and acts a return electrode. The needle is attached to the
micrometer, which transverses the probe across the pipe radius. The micrometer positions the
probe within 20.02 mm. At the other end there are the exposed tips, preceded by a 908 elbow
bend, which is at 30 needle diameters before the tips. The wires, insulated with varnish and
encapsulated by the needle, are placed side by side with a silicon resin used for sealing and
bonding. The lengthwise spacing between the front and rear sensors is 2000250 mm, and the
exposed tip area is roughly the wire cross section area, 11000 mm2.

3.2. Data acquisition system and phase indicator function

The two sensors work independently as phase indicators. The output voltage of the two
channels signal conditioner ¯uctuates between a high and low value. The circuit is open (3.0 V)
when air surrounds the tip and is closed (0 V) when water covers it. This choice of voltage
polarization proved to be e�cient in reducing undesirable drift due to electrochemical
phenomena. The twin signal is sampled at 50 kHz per channel during a period of 1000 s by a

Fig. 9. Electrical probe assembly.
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National Instruments
1

AT-MIO16, a 12 bits data acquisition board, driven by a 486 PC
computer.
A typical sample of the raw signal for a bubble that hits ®rst the front sensor and then the

rear sensor, is shown in Fig. 10. This signal appears in terms of the percentage of the voltage
span S, de®ned as:

S � 100

�
Vÿ L

Hÿ L

�
, �32�

where V, H and L are the instantaneous voltage, and the highest and the lowest levels,
respectively. As observed in Fig. 10, the change of voltage shows a delay when the sensor
penetrates the bubble (low to high). This change is almost instantaneous when the bubble
leaves the tip. This is attributed to the hydrodynamics of the interface puncture process: before
the sensor penetrates the bubble some liquid has to be drained and the force due to the
interfacial tension has to be overcome. The interface deforms, the liquid ¯ow ®eld at that point
alters, the bubble velocity changes and even some deviation in the bubble trajectory may occur.
Cartellier and Achard (1991) presented a very comprehensive discussion in this regard.
The raw voltage data interpretation requires the setting of a threshold voltage, VT: The

threshold is used as a triggering criterion to identify the phases, transforming the original
signal in a train of squared waves, known as the phase indicator function, see Fig. 10. The
phase indicator function, NG�r, t� depends on the probe radial position, r, as well as on the
time interval, and is de®ned as:

Fig. 10. Typical sample of the raw voltage signal and phase indicator function for the front and rear sensors.
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NG�r, t� �
�
1, when there is gas at position r in time t
0, when there is liquid at position r in time t:

�33�

Using the de®nition of the phase indicator function and designating by T the sampling period,
one gets three other important local interfacial properties over the pipe radial position, r: the
void fraction, e�r�, bubble frequency, fb�r�, and the mean sensor residence time inside the
bubble, �t�r�;

e�r� � 1

T

�t�T
t�0

NG�r, t� dt, �34�

fb�r� � 1

T

�
T

1

2

���� d

dt
NG�r, t�

���� dt, �35�

�t�r� � e�r�
fb�r� : �36�

3.3. Threshold level setting

Unfortunately, there is no de®nite agreement on the literature regarding the setting of a
threshold level. Usually it stays within 10 to 50% of the span, depending on the above
mentioned puncture process, under the in¯uence of the ¯uids physical properties, ¯ow
velocities, probe dimensions, and on the response characteristics of the signal conditioner.
The ®rst step toward the threshold level setting is to de®ne the voltage span levels, H and L,

which appeared in Eq. (32). This normalization is necessary since the raw signal can include
undesirable base noise or undershoot or overshoot behavior, depending on how the signal
conditioner responds to the phase change. For the present case, there is some base noise only
when the signal is low (i.e., the tip of the probe is immersed in liquid); undershoot or
overshoot signal behavior were minimized after carefully ®ne turning the signal conditioner,
which meant an adjustment of the resistance in the reference bridge.

Fig. 11. Mean residence time (a) and its second derivative (b) vs. the relative threshold level.
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The Fig. 11(a) shows the mean residence time of front sensor, i.e., the period the sensor
stays inside the bubble, Eq. (36), plotted as a function of the relative threshold level. This
threshold level can vary from 0 to 3 V, corresponding to the minimum and maximum voltages
attained by the circuit. To get rid of the undesirable background noise and overshoot or
undershoot behavior induced by the electronic circuit, one proposes to re-scale, from 0 to
100%, the range between the absolute L and H voltages which sets the range where mean
residence time behaves as a slow varying function. When the threshold level is low,
background oscillations appear as if small bubbles were hitting the probe. This changes the
mean residence time, which varies suddenly and then increases sharply. When the relative
threshold is set to a very high level, the mean residence time falls quickly, as the interpretation
is that the liquid involves the probe most of the time. In between, there is a range where the
mean residence time behaves as a slow varying function. The new signal voltage span is then
de®ned taking the second derivative of the mean residence time in relation to the threshold
level (Fig. 11b), and choosing L and H as the limits where the second derivative is very close
to zero.
After de®ning the voltage span, another question arises: are the threshold level for the front

and rear sensors independent? In fact, one may argue that the front sensor, due to probe
intrusion, may cause a deviation on the bubble trajectory, lowering the void fraction and the
bubble frequency measured by the rear sensor. Conversely, one may assume that the front
sensor does not cause any trajectory deviation and just slows down the bubble. The rear sensor
will indicate a higher void fraction, besides measuring the same bubble frequency as the front
sensor. This question was dealt with in a vast number of experiments, depicted in Fig. 12.
Fig. 12(a) shows a comparison between the void fraction, as measured by the front and rear
sensors. In Fig. 12(b) the same comparison holds for the bubble frequency. The threshold is

Fig. 12. Void fraction (a) and bubble frequency (b) for a constant threshold level: comparison between the
measurements delivered by the front and rear sensors.

S.G. Dias et al. / International Journal of Multiphase Flow 26 (2000) 1797±18301814



the same in both Fig. 12(a) and (b), where the dashed line is the least square linear ®t for the
experimental data; the solid line equates the front and rear sensor measurements.
The situation depicted in Fig. 12(a) and (b) is typical in all the experimental runs and does

not depend on the threshold if the same level is set for both signals. One notes in Fig. 12(a)
that the front sensor measures a systematically higher void fraction. In a less pronounced way,
the same holds when one compares the bubble frequency. The deviation between the front and
rear sensor measurement is lower for the frequency when compared with the deviation in void
fraction. If the great majority of bubbles hitting the front sensor also hits the rear sensor, the
bubble trajectory deviation is a less pronounced e�ect than the interface deformation or the
change in the bubble velocity. To compensate these e�ects, the threshold for the rear sensor
signal shall be adjusted to a lower level, so that it will deliver the same void fraction, eR�r�, as
the front sensor, eF�r�:

eF�r� � eR�r�: �37�

Due to the lower sensitivity of the rear sensor Eq. (37) could not be enforced for less than
10% of the 180 data points collected from eighteen runs. For these particular cases the
threshold for the rear sensor was lowered to 0% and Eq. (37) could not be satis®ed. In those
cases one adjusted the rear sensor threshold value to 0% of the span.
One may now continue looking for a procedure to set the threshold level for the front

sensor. In fact, the values for the threshold level applied to the front sensor comes out from a
calibration. To calibrate the probe one takes the product of the local bubble velocity times the
void fraction, as measured by the probe, and integrates it over the pipe cross section to
evaluate the average gas super®cial velocity, hJ V

Gi:

hJ V
Gi �

�R
0

2pre�r�Vbz�r� dr�R
0

2pr dr

, �38�

The symbol h i denotes cross section area-averaged values and R is the pipe radius. This
averaged value of the gas super®cial velocity is then compared with the super®cial gas velocity
obtained by the volumetric measurement, hJGi: Referring the QG as the volumetric gas ¯ow
rate, if A is the pipe cross sectional area the gas super®cial velocity is:

hJGi � QG

A
: �39�

Ideally, the calibration should be a recurrence procedure, since the threshold setting determines
the quantities e�r� and �Vbz�r�, and one looks for a threshold level that gives a lower average
deviation between the values calculated by Eqs. (38) and (39). Appropriate values for the
threshold level are shown in Table 2 for distinct liquid super®cial averaged velocities, hJLi:
These results are independent of the gas ¯ow rate. There is a clear tendency for decreasing
threshold settings as the liquid super®cial velocity increases. This behavior can be, in part,
attributed to the bubble piercing process. Negative values indicate that, for the highest liquid
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super®cial velocities, a no deviation condition can exist for a threshold set between the two
discrete values of 5 and 10%.

3.4. Classi®cation of bubble signals

After setting the threshold and discriminating the phases, the next step is to identify the
signals delivered by the probe when a bubble is pierced by the front and rear sensors. Due to
the possibility of intercepting bubbles whose trajectories are not aligned with the probe axis,
the classi®cation criterion becomes broader than the ones commonly used. The signals are
classi®ed into seven cases, shown in Fig. 13. As indicated, Dtj is the time interval spent by the
bubble to travel between sensors and is used in Eq. (2) to calculate the apparent bubble
velocity, and TF and tR are residence time.
Case 1 shows a typical signal: the bubble hits ®rst the front sensor and then the rear sensor.

In this situation, DtjRtFj
: Signals that appear as Cases 2 and 3 do not count for computing the

bubble velocity as the method itself is not provided with the distance s (de®ned in Fig. 1). Case
4 is similar to case 1, except that tFj

> tFj
and DtjRtFj

(the chord pierced by the front sensor is
larger than the one pierced by the rear sensor). Cases 5 and 6 arise when the bubble hits the
rear sensor and then the front sensor. Finally, in Case 7 the signals do not overlap themselves
and are spaced by Dtj: To account for the events appearing in Case 7, one calculates the ratio
�`=Dtj� as a way of establishing a minimum velocity and to ®nd out if the same bubble has hit
the front and rear sensor. If �`=Dtj � > 25 cm/s, the signals are considered to compute the
bubble velocity; otherwise, the signals are classi®ed as Case 2 or Case 3 above. This criterion is
similar to the waiting time introduced by Leung et al. (1995).

3.5. Evaluation procedures for the PDFs

The procedures to evaluate the bubble velocity and bubble diameter actual PDFs are
summarized in the ¯ow chart of Fig. 14. The steps (1), (2), (3) and (4) are concerned with
signal acquisition, threshold level setting and the transformation process that changes the
voltage time series in a normalized signal (squared wave) ranging from 0 to 100% of the
voltage span, as indicated in Section 3.3. The steps (5) to (11) comprise two control loops that,
interactively, ®nd the solution for the bubble averaged diameter and g0: In step (12) the actual

Table 2
Threshold level� averaged liquid super®cial velocity

JL (cm/s) Threshold level (%) Deviation (%) 100�hJ V
Gi ÿ hJGi�=hJGi

0 20 +8.5

26 15 +5.9
51 10 +2.9
76 5 ÿ0.9
103 5 ÿ0.9
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PDFs of the gas velocity and bubble diameter are evaluated at every radial position by solving
Eqs. (29) and (30).
Step (3) to (11) form the core of the algorithm. Step (3) applies a threshold value to

normalize the signal delivered by the front sensor. This value is set in accordance with Table 2,
within the range 5 to 20% of the voltage span, remaining the same for the whole set of data
points spanning across the pipe radius. Step (4) is a reading routine that generates the
normalized signal (0 to 100%) from every radial position along the pipe radius. Once the data
belonging to the ith pipe radial position is read, step (5) performs two tasks: adjusts the
threshold level and normalizes the signal delivered by the rear sensor, enforcing Eq. (37), and
classi®es the front and rear sensor normalized signals accordingly to Section 3.4. Step (6)
determines the local PDFs for the apparent bubble velocity and chord length, Eqs. (2) and (4),
as well as its ®rst and second moments. In step (7) the averaged and the mean square values of
the velocity and chord length ratios are evaluated by means of Eqs. (12) and (13). Initial
guesses for �D and g0 are used to start the procedure: �D � �Xs and g0 � 0: They are necessary
since the ®rst and second moments of p�Vs=Vb� and p�Xs=D� depend on �D and g0: In step (8) a

Fig. 13. Classi®cation of the signals generated by the two sensors.
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Fig. 14. Flow chart diagram for the determination of local PDFs.
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system of non-linear algebraic equations; Eqs. (17), (18) and (24) through (26), is solved
interactively to get the values of g0, �D, �D

2
, �Vb and �V

2

b for the ith pipe radial position. The step
(9) checks if the relative di�erences between �D and g0, as calculated in step (8), are used in step
(7) to repeat the calculations; otherwise, the next data is read. When the entire set of data
points has been processed, step (10) switches the process to step (11). A direct comparison
between the estimated super®cial gas velocity, Eq. (38), and volumetric measurement is made
in step (11) to be alert for miscalculations or data problems. The di�erence between the
estimated and measured values was always less than 8.5%. A graphical comparison for the
entire set of data points will appear in Section 4.1. Then, the procedure exits with a converged
solution for the limiting entrance angle, and the mean and variance of the actual bubble
velocity and bubble diameter. As a ®nal remark, it is important to state that the results do not
depend on the initial guesses for �D and g0, the ®nal solution satisfying a system of algebraic
equations.

4. Results

Eighteen runs were carried out to generate experimental data of typical variables in upward
two-phase bubbly ¯ows. In every run, corresponding to a pair of gas and liquid super®cial
velocities, �JG; JL), the measurements were taken at ten di�erent radial positions along the pipe
radius, summing up one hundred eighty data points. The air and water super®cial velocities
ranged from hJGi � 1:0 cm/s to 14.2 cm/s, and from hJLi � 0 cm/s to 103 cm/s, respectively.
The results shown in this section report some of the data available; the full set is found in Dias
(1998)
The still pictures taken at the test section reveal that the bubbles are not spherical, but

slightly distorted (see Fig. 15). Their diameters lay within the range of 2.5 mm to 4.0

Fig. 15. Test section photograph: hJLi � 103 cm/s and hJGi � 7:0 cm/s
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mm. For reference, the data of three selected runs are presented in Tables 3±5. For 10
radial positions along the pipe radius, they display: the local void fraction, e, the
averaged values of the apparent and actual bubble velocity; the actual velocity standard
deviation, sVb

; the interface velocity ¯uctuation intensity, de®ned as the ratio between
standard deviation and mean actual velocity, sVb

= �Vb; the mean chord length, the mean
bubble diameter and the standard deviation of the bubble diameter, void fraction,
apparent velocity, actual velocity, intersected chord and bubble diameter. Finally, the last
row brings some area averaged values under the symbol h i:
For two out of three selected runs, hJLi � 51 cm/s and hJLi � 103 cm/s, the data display the

typical local void fraction peak near the wall (see Tables 3 and 4). Similar saddle shape
distributions were obtained by Serizawa et al. (1975b) and Wang et al. (1987). For hJLi � 0
cm/s, however, the void fraction distribution does not show any wall-peaking and is rather ¯at.
The averaged value of the apparent velocity is always higher than the actual velocity; both

Table 3
Local data for hJLi � 103 cm/s and hJGi � 7:0 cm/s

r=R e(%) �Vs (m/s) �Vb (m/s) sVb
(m/s) sVb

= �Vb (%) �Xs (mm) �D (mm) sD (mm)

0.95 14.2 1.19 1.17 0.04 3.4 2.1 3.0 0.7
0.90 7.5 1.29 1.28 0.08 6.2 2.1 3.0 0.5
0.85 6.5 1.34 1.34 0.11 8.2 2.2 3.1 0.4

0.80 5.4 1.38 1.37 0.11 8.0 2.1 3.0 0.5
0.70 4.0 1.41 1.40 0.11 7.8 2.1 3.0 0.5
0.60 3.3 1.41 1.39 0.09 6.4 2.0 2.9 0.5

0.50 2.9 1.41 1.40 0.12 8.5 2.1 2.9 0.5
0.30 2.6 1.39 1.37 0.09 6.5 2.0 2.8 0.5
0.10 2.3 1.38 1.37 0.11 8.0 1.9 2.7 0.4
0.00 2.2 1.35 1.34 0.09 6.7 1.9 2.6 0.4

< > 5.0 1.30 1.28 2.0 2.9

Table 4
Local data for hJLi � 51 cm/s and hJGi � 5:0 cm/s

r=R e(%) �Vs (m/s) �Vb (m/s) sVb
(m/s) sVb

= �Vb (%) �Xs (mm) �D (mm) sD (mm)

0.95 8.8 0.70 0.66 0.07 10.0 2.3 3.1 0.6
0.90 9.3 0.71 0.70 0.06 8.5 2.3 3.2 0.6
0.85 8.6 0.75 0.74 0.06 8.0 2.3 3.3 0.6

0.80 7.5 0.79 0.78 0.05 6.3 2.4 3.3 0.6
0.70 6.7 0.78 0.78 0.07 9.0 2.3 3.2 0.6
0.60 6.0 0.79 0.78 0.05 6.3 2.3 3.3 0.4

0.50 5.7 0.74 0.74 0.03 4.1 2.3 3.2 0.4
0.30 5.7 0.75 0.75 0.02 2.7 2.3 3.2 0.4
0.10 5.8 0.75 0.75 0.02 2.7 2.3 3.3 0.5
0.00 5.6 0.73 0.73 0.03 4.1 2.3 3.2 0.5

< > 6.7 0.72 0.71 2.3 3.3
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pro®les exhibit the smallest values near the wall, as one would expect. The standard deviation
of the actual velocity does not show a de®nite trend for the three selected runs. For hJLi � 103
cm/s and hJGi � 7:0 cm/s, it is nearly constant at the pipe center, and has a tendency to
decrease as the wall is approached. For hJLi � 51 cm/s and hJGi � 5:0 cm/s there is no clear
tendency. Finally, for hJLi � 0 cm/s and hJGi � 1:0 cm/s, one observes large oscillations.
The interface velocity ¯uctuation intensity stays, typically, within 2.6 to 10% for the data

taken at hJLi � 103 cm/s and hJLi � 51 cm/s. These values are smaller than the ones found by
Serizawa et al. (1975b), who reported typical values ranging from 10 to 15%. This is due to the
fact that they calculated this variable for the bubble apparent velocity, which has a higher
standard deviation than the actual velocity, a one used in this work. The interface velocity
¯uctuation intensity, however, changes signi®cantly for hJLi � 0 cm/s, attaining values upto
40%. This is in agreement and is explained by the reasoning put forward by Serizawa et al.
(1975b): as the water velocity increases, the ¯uctuating motion of the bubbles suspended in the
stream becomes relatively suppressed by the intensi®ed inertial force of the water.
The averaged chord length and bubble diameter radial pro®les do not display any particular

characteristic. As expected, the averaged chord length is always smaller than the bubble
diameter. Also, the radial deviation on both averaged pro®les, from the wall to the pipe center,
stays within tenths of millimeter apart. The standard deviation of the bubble diameter lays
within 0.3 to 1.0 mm, the highest local values coming out from the run hJLi � 0 cm/s and
hJGi � 1:0 cm/s.
Fig. 16 shows a distribution of the apparent and actual velocity, p�Vs� and p�Vb�, as well as

the distribution of the chord length and bubble size (or bubble diameter), p�Xs� and p(D ),
taken at the pipe center line, r=R � 0, for ®ve pairs �hJLi; hJGi). One notices that the
distribution of the actual velocity is narrower than the apparent one. Also, as one would
expect, the distribution of the bubble diameter is narrower than the distribution of the chord
length.
Fig. 17 displays the radial pro®le of ®ve interfacial variables: void fraction, bubble

frequency, bubble velocity, bubble diameter and interfacial area density. These data correspond

Table 5
Local data for hJLi � 0 cm/s and hJGi � 1:0 cm/s

r/R e(%) �Vs (m/s) �Vb (m/s) sVb
(m/s) sVb

= �Vb (%) �Xs (mm) �D (mm) sD (mm)

0.95 1.1 0.28 0.26 0.07 25.0 3.0 3.6 1.0

0.90 1.5 0.30 0.25 0.12 40.0 3.0 3.4 0.6
0.85 1.7 0.28 0.25 0.08 28.6 2.7 3.2 0.5
0.80 1.8 0.33 0.29 0.09 27.3 2.7 3.3 0.6

0.70 1.8 0.33 0.31 0.04 12.1 2.7 3.5 0.8
0.60 1.8 0.33 0.29 0.08 24.2 2.6 3.2 0.7
0.50 1.4 0.36 0.34 0.09 25.0 2.8 3.4 0.8

0.30 1.4 0.31 0.28 0.08 28.6 2.6 3.3 0.5
0.10 1.5 0.34 0.32 0.10 29.4 2.6 3.1 0.9
0.00 1.3 0.33 0.29 0.09 31.0 2.8 3.4 0.9
< > 1.5 0.30 0.28 2.7 3.4
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Fig. 16. PDF of the apparent and actual bubble velocity, in cm/s, and of the chord length and bubble diameter, in
mm, at pipe center, r=R � 0, for di�erent liquid and gas super®cial velocities. Open rectangles, q applies to p�Vs� or
p�Xs�; solid rectangles Q applies to p�Vb� or p(D ).
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Fig. 17. Radial pro®les of: (a) void fraction; (b) bubble frequency; (c) bubble velocity; (d) bubble diameter and (e)
interfacial area density.
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to hJLi equals to 103 cm/s, 51 cm/s, 0 cm/s and hJGi spanning from 1.0 cm/s to 14.2 cm/s. The
radial pro®le of the void fraction, shown in Fig. 17(a), depends primarily on the liquid ¯ow
rate. For hJLi � 103 cm/s, the radial distribution exhibits the typical void peaking near the
wall, as remarkably as the gas ¯ow rate increases, in a similar fashion to the Serizawa et al.
(1975a) and Wang et al. (1987) data. For hJLi � 51 cm/s the void fraction distribution depends
on the gas ¯ow rate: it shows the wall peaking when hJGi is equal or greater than 5.0 cm/s; for
lower gas super®cial velocities, the pro®les get a convex shape close to the pipe wall, but are
rather ¯at in the pipe center region. When hJLi � 0 cm/s, the void fraction shows a de®nite
reduction close to the wall and its pro®le is entirely convex. The radial distribution of the
bubble frequency, as de®ned by Eq. (35), is shown in Fig. 17b. The pro®les are similar to the
void fraction pro®les at distinct liquid ¯ow rates. They attain rates up to 130 bubbles per
second, when hJLi � 103 cm/s; hJGi � 14:2 cm/s, or as low as 1.5 bubbles per second when
hJLi � 0 cm/s, hJGi � 1 cm/s.
The average bubble velocity, as shown in Fig. 17(c), has a nearly ¯at distribution in the pipe

core region, decreasing, as one would expect, near the pipe wall. This is valid for the entire set
of gas and liquid super®cial velocities, besides showing some oscillations when hJLi � 0:0 cm/s.
Looking at the void fraction and frequency distributions when hJLi � 103 cm/s, one alludes to
the fact that the pronounced wall peaking in void fraction must be the combination of a
relatively higher frequency of bubbles displacing at lower velocities. When �hJLi � 103 cm/s;
hJGir5:0 cm/s), the less pronounced frequency peak, with regard to the central region, causes
a less pronounced peaking in the void fraction. When hJLi � 0:0 cm/s, the frequency pro®le
forges the convex shape of the void fraction distribution.
The radial pro®les of the average bubble diameter are shown in Fig. 17(d). The pro®les are

rather ¯at, but the bubble diameter increases slightly toward the wall at the higher liquid ¯ow
rate, hJLi � 103 cm/s. The average bubble diameter is within 2.2 mm to 4.2 mm, con®rming
the sizes depicted in the still picture. One also notices that the bubbles tend to grow as hJGi
increases at a constant hJLi: Otherwise, the bubble diameter diminish as hJLi increases. These
two e�ects must be related to the bubble generation processes occurring in the air±water
chamber.The interfacial area density distribution is shown in Fig. 17(e). Following Ishii (1975),
one writes the interfacial area density, ai, in terms of the bubble velocity and frequency. The
expression is valid if the ¯ow is steady and developed:

ai � 2fb
1

jVbjcos f
, �40�

The PDF of the conical angle, p�f�, is given by Eq. (14). If the conical angle and the bubble
velocity are statistically independent events, Eq. (40) simpli®es to

ai � 2fb

�
1

jVbj
�
�
�

1

cos f

�
: �41�

The interfacial area density pro®les are, again, quite similar to the frequency pro®les, re¯ecting
the fact that the radial change in frequency is stronger than the change in velocity.
In addition to these local interfacial variables, one calculated two other quantities, averaged

over the pipe cross section, namely, the bubble-size frequency spectrum, i.e., the distribution of
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bubble frequency over the full range of bubble diameter, fD�D�, and the bubble-size probability
function, which gives the probability of ®nding a bubble with a given diameter D in the pipe
cross section, ph i�D�: Noticing that the probe gets information over a region of in¯uence
around its tip, which is proportional to the bubble diameter, the probability of intercepting a
bubble of diameter D inside the pipe is the ratio between the bubble and the pipe cross section
area. Then, if the bubble frequency is a local quantity, fb � fb�r�, as well as the bubble size
distribution function p�D, r�, the frequency of bubbles with diameter D in the pipe cross-
section, fD�D�, is:

fD�D� �
�R
0

2pr
��

fb�r�
pD2=4

�
p�D, r�

�
dr, �42�

From Eq. (42), one is able to de®ne the total bubble frequency, fh i, in the pipe cross section:

fh i �
�
fD�D� dD: �43�

Finally, the averaged bubble-size PDF ph i�D� is the ratio between Eqs. (42) and (43):

ph i�D� � fD�D�
fh i

�44�

Three averaged bubble-size PDFs, ph i�D�, calculated according to Eq. (44), are shown in
Fig. 18. One notices that the smaller bubbles are more likely to occur. If the probability of
intercepting a bubble of diameter D inside the pipe is proportional to the square of the bubble
to pipe diameter, Eq. (42), the bubble-size frequency spectrum will indicate that the smallest
bubbles will have the highest frequencies. This reasoning explains the di�erence in the bubble
spectrum if one compares the results in Fig. 18 with the local PDFs shown in Fig. 17(d). As

Fig. 18. Averaged bubble-size probability density function.
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one may observe, the mean bubble diameter in Fig. 18(a)±(c) is, respectively, 2.6, 2.7 and 2.4
mm. The local PDFs reveal 3.3, 3.5 and 3.8 mm.

4.1. Validation

The agreement of the results obtained in this work with previously published ones validates
the model. A further validation, however, is achieved when one compares volumetric
measurements with quantities coming out from area averaging processes, or when one
compares the results with a extensively used relation. In the former case, the gas super®cial
velocity, as measured by the ori®ce plate, is compared with averaged values calculated from the
local measurement of the interfacial properties, namely, the super®cial gas velocity calculated
as the product of the interfacial velocity and the void fraction, given by Eq. (38), or as the
product of the bubble volume times the bubble frequency, both averaged over the pipe section.
These alternative forms to evaluate hJGi are used to check the consistency of the method. In
the latter case, the radial distribution of the interfacial area density is compared with the well
known equation proposed by Ishii and Mishima (1984), which is valid under some restrictions.
The gas super®cial velocity, expressed in terms of the bubble frequency and volume, is then:

hJ D
Di � fh i

�
ph i�D�pD

3

6
dD, �45�

where fh i is de®ned in Eq. (43).
Fig. 19(a) shows, for reference, the super®cial gas velocity, measured with the ori®ce plate,

against hJ V
Gi, as given by Eq. (38). The agreement is bounded within 8,5%. Fig. 19(b) shows

Fig. 19. Area averaged super®cial gas velocity comparisons: (a) volumetric measurement, hJGi, against the averaged
gas super®cial velocity, hJ D

Gi, and (b) the gas super®cial velocity, expressed in terms of the bubble frequency and
volume, hJ D

Gi, against hJ V
Gi:
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the plot of the gas super®cial velocity hJ D
Gi, as given in Eq. (45), against hJ V

Di: In this case the
dispersion is tighter indicating that both formulae give results bounded within 8.5% in regard
to hJGi:
The uncertainty of hJGi may be as high as 2.5% due to the combined uncertainty of the

measurements taken with the ori®ce plate, 2%, and the Plexiglas pipe cross section area, at
least 1.5%. Putting this into perspective, the bound of 8.5% is considered a good result,
emphasizing the consistency of the method.
Following Ishii and Mishima (1984), the local interfacial area concentration, aD

i is calculated
from

aD
i �r� �

6e�r�
DSM�r� , �46�

where the Sauter mean diameter, DSM, is

DSM�r� �

�
p�D�D3 dD�
p�D�D2 dD

: �47�

A direct comparison between the two radial pro®le, as calculated by Eqs. (41) and (46), is
shown in Fig. 20 for three di�erent runs. The open symbols refer to Eq. (41), the closed ones
to Eq. (46). The agreement, again, is very good showing the coherence of the measurements.

Fig. 20. Interfacial area concentration. The open and closed symbols refer to ai as evaluated using Eq. (41) or Eq.
(46), respectively.

S.G. Dias et al. / International Journal of Multiphase Flow 26 (2000) 1797±1830 1827



5. Conclusions

A new statistical method aimed to calculate of local interfacial variables in two-phase gas±
liquid bubbly ¯ows was developed. The method applies to data taken with double-sensored
intruse probes. The analysis ®rst considered a single spherical bubble and was further extended,
as a statistical approach, to a swarm of bubbles. The basic assumption of the method
accounted for the multidimensional nature of bubble displacement. In this less restrictive ¯ow,
the analysis related the measured or apparent variables, the bubble velocity and intersected
chord, with the actual ones.
To verify the consistency of the method, a large number of data were taken. An

experimental apparatus was constructed to generate bubbly ¯ow in a vertical round pipe. The
interfacial properties were measured with a double-sensor electrical probe. The approach
employed for data conversion and interpretation treats the signals generated by the two sensors
separately in order to construct the phase indicator functions. The mean residence time, the
void fraction and the bubble frequency delivered by each sensor are taken into account before
setting a generic threshold level. A further adjustment of the threshold setting is achieved by
taking the di�erence between the measured and calculated averaged gas super®cial velocity.
The method was validated comparing the radial distribution of local variables, like the void

fraction, the bubble velocity or the interface velocity ¯uctuation intensity, with previously
published ones. A further validation was achieved comparing the results with extensively used
relationships, as the one for interfacial area density, or comparing volumetric measurements
with quantities coming out from area averaging processes. In the latter case the deviation
bounds within 8.5%. This deviation is largely due to the intrusive nature of the measurements,
to the non-spherical bubble inclusions and to the uncertainty in the measurement of the gas
super®cial velocity. The bubble piercing process is complex. It may ultimately alter the void
fraction and the bubble velocity due to deceleration, deformation and trajectory shift. The
method, despite being developed for spherical bubbles, was tested in bubble populations which
exhibited spherical and non-spherical shapes. A clear accountancy of these processes on the
limit of validity of the model is beyond the scope of this work. However, most of the
mentioned deviation regarding volumetric measurements can be attributed to the net result of
these processes. The method proved to be computationally e�cient and disclosed physically
consistent results for the actual distribution of the bubble velocity and size.
One of the most important characteristics revealed by the method is concerned with the

di�erence between the measured and the actual PDF of the bubble velocity and bubble
diameter. In fact, one may emphasize that the PDFs of the actual variables, bubble velocity or
diameter, are narrower than the respective PDFs of the measured variables (Fig. 15). Di�erent
from what is reported by Serizawa et al. (1975b) or Kocamustafaogullari and Wang (1991),
this e�ect is remarkable for the velocity distribution: the actual bubble velocity is almost
constant, contrasting with a measured velocity that presented a wider spectrum.
The method also described well the in¯uence of the entrance angle on the deviation between

the apparent and actual distribution. The mean apparent bubble velocity equals the actual one
only if g0, the limiting angle, is zero; otherwise, the velocity ratio increases with increasing g0:
If the entrance angle is constant, the velocity ratio is always bigger than one. Also, it is bigger
than the velocity ratio that comes out when one assumes an entrance angle uniformly

S.G. Dias et al. / International Journal of Multiphase Flow 26 (2000) 1797±18301828



distributed within a solid angle. Even though the analysis relied strongly on the entrance angle
aspects, this is still a subject of further research. For example, the hypothesis of isotropy
postulated by Kataoka et al. (1986) to relate to the ¯ow characteristics is questionable in
regions near the wall. Also, more simple questions relating the entrance angle with bubbly ¯ow
patterns, are not fully established yet.
Another important aspect disclosed in this study is the in¯uence of the probe lengthwise

spacing on the deviation between the measured and actual variables. When D=` increases, the
standard deviation of the statistical distributions also increases (velocity or intersected chord
length). Therefore, measurements made with probes having high D=` are likely to display a
wider spectrum than the ones carried with probes having smaller D=`: The mean values,
however, do not change signi®cantly.
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